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A class of axisymmetric stationary exact solutions of 
Einstein-Maxwell equations 

M D Patel 
Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar 388 120, India 

Received 5 April 1978, in final form 11 August 1978 

Abstract. Einstein-Maxwell vacuum field equations of an axially symmetric stationary 
charged rotating source are studied. A class of asymptotically flat solutions representing the 
exterior field of a stationary rotating charged oblate spheroidal source is obtained. By 
examining eigenvectors of Einstein tensor GLj ,  invariants R,R” and Petrov classification of 
Weyl’s conformal curvature tensor, it is proved that the metric potentials describe null 
electromagnetic fields. 

1. Introduction 

Astronomical observations show that a large number of heavenly bodies are in a state of 
stationary rotation about their axes. One of the most interesting effects of rotation is 
that the radial character of the field is destroyed. Blackett (1947) gave a hypothesis that 
‘a rotating star produces an electromagnetic field’. The equilibrium shape of a rotating 
star is an oblate spheroid. The only astronomical objects discovered so far, where 
general relativistic effects are not negligible, are pulsars. They are dense rotating stars 
with large magnetic fields. Hence axially symmetric stationary exact solutions of the 
Einstein-Maxwell equations have attracted much attention. Bonnor (1961) gave a 
method for generating axially symmetric static electrovac solutions from corresponding 
solutions of the axisymmetric static Einstein vacuum field equations. Som and Ray- 
chaudhari (1968) obtained a cylindrically symmetric solution for charged dust with 
rotation where, however, the Lorentz force vanishes so that equilibrium is due to the 
balancing of the gravitational effect of matter and the electromagnetic field energy by 
the centrifugal action of the rotation. By assuming a linear relation between matter 
density and magnetic energy, Banerji (1968) obtained a class of cylindrically symmetric 
static solutions of the Einstein-Maxwell equations. 

By considering the metric coefficient goo to be a function of the electrostatic 
potential A, Synge (1960) obtained solutions which represent the static electrovac 
universe. In the case of the stationary axisymmetric metric one must consider elec- 
tromagnetic fields instead of electrostatic fields together with those additional functions 
appearing in the metric due to presence of rotational asymmetry. Different functional 
relationships may be assumed depending upon the mathematical expediency or physi- 
cal motivation. In this paper a class of axially symmetric stationary exact solutions of 
the Einstein-Maxwell vacuum field equations are obtained. The physical significance 
of the solution has been discussed by examining eigenvalues and eigenvectors of the 
Einstein tensor. Further it has been found that the metric is appropriate for the 
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description of the exterior space-time of an oblate rotating charged spheroid or 
semi-infinite line source. 

2. Metric and field equations 

Misra (1960) used oblate spheroidal coordinates to obtain static solutions of empty 
space-time field equations. Patel (1975) used these coordinates in obtaining axially 
symmetric zero mass meson solutions of Einstein's equations. As discussed by Patel 
(1978), the general metric of a stationary axially symmetric space-time in oblate 
spheroidal coordinates is of the form 

de2  d a 2  
ds2=  -e26 dt2+e2"(dq5 - w d t ) 2 + e z ' a 2 ( 8 2 + a 2 ) ~ - + ~ )  i + e  i -a  (2.1) 

where 6, U, w and p are functions of 8 and a with 0 s 8 < CO; - 1 s a s 1. Let us number 
t, 4, 8, cy as 0, 1 , 2  and 3 respectively. The electromagnetic field tensor arises from two 
scalar functions A and B as follows (Israel er a1 1972, Patel 1975) 

FQw =A,,  (2.2) 

,U - 1 F - ~ - g  E wuAB,A 

where cwUA is the Levi-Civita permutation tensor density. 
The Einstein-Maxwell field equations are 

(2.3) 

where E )  is the electromagnetic energy tensor. Roman indices range from 0 to 3, and 
Greek indices from 1 to 3. A semicolon denotes a covariant differentiation with respect 
to the metric of space-time, and a comma denotes a partial differentiation. 

Now it is easy to see from equations (2.2), (2.3) and (2.5) that E: + E: = 0. 
Hence from equation (2.4) 

G:+G:=o, (2.8) 
which implies a simple result 

6 +a = k = constant. (2.9) 

Then the Einstein-Maxwell (EM) equations (2.4), (2.5) and the Maxwell equations 
(2.6), (2.7) give the following results. 

A6 - (1 +-)A@ e 2 - a 2  - (1 + e2)2S:-  (1 - a  2 2  ) s3 2 
2 

- i [wP+i (1 -e4 )w:+f ( l -a4 )w: ]exp(2k-46)  

= -Q[{(l + e2)(A:+ B:) + (1 -a2) (A:+ B:)} exp( -26) 

+2wJ(1 +e2)~(1-cy2)(A2B3-AA3B2) exp(k -4611 (2.10) 
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2 2  2 (2 + e 2 - a 2 ) ~ p  + 2(1+ e2)26:+2(1 - a  ) s3 

f ( e 2 + a 2 ) A p + ( i + e  ) a2-( i -a  ) a 3  
(2.1 1) 2 2  2 2 2  2 = f [ ( i + e  ) w z + ( 1 - a  ) ~ ~ I e x p ( 2 k - 4 8 )  

2 2  2 2 2  2 

2 2  2 +a[ - ( I  + e2)2w:+( i  - a  ) w3] exp(2k -48) 

= -Q[( 1 + O2)(A: + B:) - (1 - a 2)(A: + B:)] exp( - 28) .  (2.12) 

P = -4Q2[ w {( 1 + e2)(A: + B i) + (1 - a 2)(A: + B :)} exp( - 28) 

+ ( I +  w 2  exp(2k -4S) )J (1+e2)J (1 -a2) (A2B3-A3B2)  exp(-k)] 
(2.13) 

-$(l+ w 2  exp(2k -4S))P + 2wA6 - w{(l + e 2 )  w:+ (1 - a2)w:} exp(2k -48) 

= -2J(1 +e2)J(i-a2)(A3B2-AA2B3) exp(-k) (2.14) 

(2.15) 26283-tW2W3 exp(2k -48) = -2Q(A2A3+B2B3) exp(-26) 

+ w{A2(w3 - 2wS3) -A3(w2 -2wS2)} exp(k - 28)] exp(3k - 68) 

+ {w~AZ-  w2A3 -4w(S3A2- S2A3)} exp(k - 2611 exp(k - 26) = 0. 

+Q[(I +e2)-1/2(i - a 2 ) - 1 / 2 { ~ ~ - 2 ( 1  + e 2 ) ~ 2 ~ 2 - 2 ( 1  - c x ’ ) s ~ B ~ }  

(2.16) 

2wQ[wJ( l+  e2)J (  1 - a2){(w3 - 283w)B2 - (w2 - 2wS2)B3} exp(k - 28) 

- {( 1 + 02)(w2 - 2wS2)A2 + (1 - a2)A3(w3 - 2wS3)}] exp(2k -46) 

+ J ( 1 +  e2)J(i -a2){B2W3 - W 2 ~ 3  + 4 w ( ~ 2 ~ 3 - ~ 3 ~ 2 ) }  exp(k - 28) 

+ 2(1+ B2)82A2+ 2(1 -a2)S3A3 -AA = 0 (2.17) 

where 

A P  = ( 1 + e 2 ) ~ 2 2  + ( 1 - a 2)p33 + ep2 - ap3 
P = A w - 4(1+ e2) w2s2  - 4(1- w3a3 

Q = (1 - w exp(2k - 48))-’. 

Here and in what follows the lower suffixes 2 and 3 after an unknown function 
denote partial differentiation with respect to 8 and a respectively. 

3. The solution 

The field equations (2.10) to (2.17) are simultaneous, nonlinear partial differential 
equations of second order. It is very difficult to obtain a general solution of these 
equations. To simplify the problem mathematically, let us suppose that the potential 
functions A and B are related as follows 

J (1+02)B2= -J (1-a2)A3 

J(1-a2)B3=J(1+02)A2.  (3.1) 
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These relations between the potentials A and B simplify the field equation (2.15) 
into a form 

a a a w  a w  
-[exp(2S - k)]-[exp(2~ - k)]  = --. ae aa ae aa 

A particular solution of this equation is 

w = exp(2S - k )  + C (3.2) 

where C is an arbitrary constant. The condition B23 = B32 implies that 

AA = 0. (3.3) 

AB = 0. (3.4) 

A, = 0, (3.5) 

And it is easy to see that 

Now the equation (2.16) is satisfied identically. 'The equation (2.1 1) implies that 

and the equation (2.14) gives a result of the form 

C 2  exp(2k - 2S){A6 - 2(1+ e2)&-2(1 -a2)6:} = -2{(1+ e2 )Ai+  (1 -a2)A:} .  

Let us substitute 

(3.6) 

x = e-28 

then 

[ ( 1 + 02)A + ( 1 - (Y ')A :]. 
4 e-2k 

AX=- 
C 2  (3.7) 

The equations (3.3), (3.4) and (3.5) are linear partial differential equations of second 
order. The author (Patel 1979) has solved these equations. The solution of equation 
(3.5) is 

n2(22-n2)(42-n2) .  . . { ( 2 ~ - 2 ) ~ - ~ * }  
,=[Coil-  r = l  c (2s)! 

(12-n2)(32-n2) .  . . { ( 2 ~ - 1 ) ~ - ~ ' }  
s = l  (2s + l ) !  

( - l ) ' ( n + s + l ) ( n + s + 2 ) . .  . ( n + 2 s - l )  
x [Doe-'( 1 + n 

s-1 S !  

( -1 ) " " ( s+ l -n ) ( s+2-n ) .  , . (2s-1-n)  
r = l  S !  

(3.8) 
where CO, C1, Do, D1 are arbitrary constants and n is a constant parameter of the 
family. The electromagnetic potentials A and B can be obtained by solving equations 
(3.3) and (3.4). A class of solutions is known but only physically meaningful solution of 
these equations will be considered. 

gea 
i + e 2 - a 2  A =  (3.9) 



A class of axisymmetric stationary exact solutions 387 

where (T, a constant, is the solution of the equation (3.3), which is the electric potential 
due to the distribution of electric charge over an oblate spheroidal source at the origin. 
Then 

(TJ( 1 + eZ)J( 1 - ff 2, 

i + e 2 - a 2  
B=- (3.10) 

which is the magnetic potential due to the rotation of an electrically charged source. 
Now equation (3.7) becomes 

4c2(e2+a2) e-2k Ax= 
( i + e 2 - a 2 ) 2 c z  ' 

(3.11) 

This is an inhomogeneous linear partial differential equation of second order. Its 
complementary function, as obtained by the author (Pate1 1978) is, 

a -m2(22-m2)(42-m2)...{(2~-2)2-m2} 
(2s)! 

(12-m2)(32-m2). . . { ( 2 ~ - 1 ) ~ - m * }  
s = l  (2s + l)! 

O0 ( - l)s ( m  + s + l ) ( m  + s + 2) . . . (m + 2s - 1) 
x[DbO-"(l+m s = l  2 S !  

c2 ( - l ) " " ( s + l - m ) ( s + 2 - m ) . .  . ( 2 s - l - m )  
+D;O"(l+m 2 S !  

s = l  

(3.12) 

and a particular integral is 

2 2  e-2k X =  cz(i + e 2  4)' (3.13) 

The general solution of the equation (3.11) is the addition of complementary function 
(3.12) and particular integral (3.13), hence 

X = e-26 = CF + PI. (3.14) 

Now it is easy to see that rest of the field equations are satisfied identically. 
Let us examine the behaviour of the solution at spatial infinity. In case of oblate 

spheroidal coordinates, distance from the axis of symmetry, r and distance from origin, 
R are given by the expressions 

r = a J ( l + e 2 ) J ( 1 - a 2 )  andR =aJ( l+e2-a2) .  (3.15) 

Here A and B both vanish at least as R-l. As R +CO, 0 in equation (3.8) must tend to 
zero so we choose 

n>O and D1 = 0. (3.16) 

Also for the metric (2.1) to be asymptotically flat, the following conditions are to be 
satisfied. 

D; = O  m > O .  (3.17) 
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Thus 

OC ~ ’ ( 2 ’ - ~ ~ ~ ) ( 4 ~ - m ’ ) .  . . { ( 2 ~ - 2 ) ~ - m ’ }  2 j  e-2s = 2 a 2  e - 2 k  
c2(i+e2-a2) (2s)! 

OC ( 1 2 - m 2 ) ( 3 2 - ~ 2 ) .  ..{(2s-1)’-m2} 

(2s + l)! 
+ C ; a ( l +  

s = l  

s = l  S! 

a’s) 
n2(22-n2) * .  .{(2s-2)2-n2} 

,=[CO(,-  s = l  c (2s)! 

OC ( l * - n * ~ ( 3 ~ - n ’ ) .  . . ((2s-1)’-n2} 
s = l  (2s + l)! 

( -  l)’(n + S  + l ) ( n  + S  + 2 ) .  . . ( n  +2s - 1) 1 
x [Doe--( i + n s = l  c S !  i,)’?3 

(3.186) 

w = + c (3 .18~)  

is a class of solutions representing the exterior gravitational field of a rotating stationary 
charged oblate spheroid. 

4. Physical interpretation 

Fields satisfying equations (2.4H2.7) are broadly divided into two categories (i) null 
fields and (ii) ncn-null fields. In the case of a non-null field the electromagnetic energy 
momentum tensor Eij possesses two-to-two equal and opposite eigenvalues (i.e. A,  - A ,  
A,  - A ) .  When all the eigenvalues are zero and nonvanishing F,j satisfying equation 
(2.7) exist, the field is called a null electromagnetic field (Rao and Pandey 1962). In 
view of equations (3.2) and (3.5), the nonvanishing components of mixed Einstein 
tensors GI; and Maxwell tensors F,, are 

( 4 . 2 ~ )  

(4.2b) 

Therefore the four eigenvalues of the Einstein tensor defined by an equation 

IG; - Ag:/ = 0 (4.3) 
vanish identically. The eigenvector associated with Ace, no longer remains time-like but 
becomes null. The other eigenvectors are space like. The resulting space-time 
describes a null electromagnetic field with photons streaming along the q5 direction with 
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C,, = (/A, v = 1,2 ,  . . . 6 )  

the fundamental velocity. Hence it follows that the line element (2.1) with the relations 
( 3 . 2 )  and ( 3 . 5 )  is always compatible with a null electromagnetic field. Also the physical 
significance of the field can be studied by examining nature of an invariant RiiR ' j .  The 
nonzero components of the Riemann curvature tensor satisfy the relations 

-0 0 0 0  0 0 
0 - P  -4  0 -4  P 
0 - q  P O  P 4 
0 0 0 0 0 0  
0 - 4  P O  P 4 

-0 P 4 0 4 - P .  

( 4 . 4 ~ )  

(4 .4b )  

(4 .4c )  

and nonzero components of the Ricci tensor are related by the relations 

Roo= -CRol=C2R1l.  (4.5) 

Hence by direct calculation it can be shown that the invariant 

(4.6) R..R" = 0. 

The Petrov classification of Weyl's conformal curvature tensor plays a fundamental 
role in an invariant theory of gravitational radiation. For the Petrov classification of the 
Weyl's conformal curvature tensor of the metric (2.1), let us introduce the Pirani (1957) 
scheme of 6-dimension formalism. 6-dimension pseudo-Euclidean space is introduced 
in which vectors are, just bivectors (skew tensors) in a local tangent Minkowski space 
defined by the tetrad 

A to, = ( -e-', - (e*-k + Ce-'), 0, 0) 

A t l ,  = (0 ,  0 ,  0 )  

Physical components of Weyl's conformal curvature tensor Chi jk  go over to the 
components of the symmetric 6-tensor 
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then 

0 0  0 i 0 -q+ ip  p + i q  
P = M + i N =  0 -p-iq -q+ ip  

where i = 4- 1. 
All three eigenvalues of the matrix P are equal and each is equal to zero. Also P f 0 

but P2 = 0; hence the canonical form of Weyl’s conformal curvature tensor is of type 
- N. 

These results characterise the null electromagnetic radiation. Lichnerowicz (1956) 
interpreted the null electromagnetic fields as a fluid distribution of photons with null 
geodesics as lines of flow. 

5. Conclusion 

The metric obtained in 0 3 above is nonsingular for 8 >t and - 1 < (Y < 1. The 
singularity regions of the solution (3.18) are (i) axis of summetry a = + 1 or - 1, and (ii) 

8 6;’ that is an oblate spheroid of thickness less or equal to J through the axis of 
symmetry and of radius less or equal to (J5/2)a in the equatorial plane. Also when 
cr = 0, that is when electromagnetic fields are switched off the solution (3.18) becomes a 
class of axially symmetric stationary asymptotically flat exact solutions of Einstein’s 
vacuum field equations obtained by the author (Patel 1978). Hence the source of the 
metric so obtained is the charged rotating oblate spheroid 8 2; or semi-infinite line 
source along the axis of symmetry as in the NUT solution (Bonnor 1969). 
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